Inappropriate medication use can lead to adverse drug events (ADEs) that may be misinterpreted as a new medical condition. This misinterpretation can lead to a prescribing cascade, where the condition is treated with another drug, which can lead to another ADE, and so on. However, the prevalence of prescribing cascade is unknown and its impact on patient care can be hard to assess if done uniquely through manual chart reviews. This project aims to develop a deep learning method for automatically detecting prescribing cascades in clinical notes.
Infos
Participants
- James Liang
Année : 2022
Région : Montreal Regional Science & Technology Fair (Sec/Coll)
Type de projet : C
Classe : C1
Categorie de projet : IIR
Volet : Collegial
Niveau scolaire : Collégial 1
École : Marianopolis College
Prix et distinctions
Finale Québécoise
Montréal,Montréal
- Médaille du Réseau Technoscience - Argent Collégial
- Prix de IEEE Canadian Foundation - Éloi Ngandui